
CROSSTALK The Journal of Defense Software Engineering 11December 1998

Several authors have noted that
maintenance of software systems
intended for a long operational life

pose special management problems [1-
3]. The Software Engineering Institute
believes that organizational processes are
a major factor in the predictability and
quality of software [4]. J. Arthur and K.
Stevens explain that descriptiveness,
completeness, and readability of software
documentation are key factors affecting
system maintainability [5]. Additionally,
M. Hariza, et al., B. Curtis, and C. Yuen
all conclude that programmer experience
is at least as important as code attributes
in determining the complexity associated
with software maintenance [3,6,7]. Re-
search by the Standish Group and W.
Wayt Gibbs indicates that a low software
success rate results from poor require-
ments and poor risk management [8, 9].
Therefore, software maintenance plan-
ning and management should be formal-
ized and quantified.

Requirements are the foundation of
the software release process. They pro-
vide the basis to develop budgets, sched-
ules, and design and testing specifica-
tions. In the maintenance environment,
requirements are gathered through
change requests from a variety of people
including decision makers, system opera-
tors, developers, and external interface
teams. These people have different back-
grounds and different levels of under-
standing of computers and system opera-
tions. This diversity often leads to
misinterpretation of the intent of the
change description, which can change
the scope of the requirement.

Furthermore, throughout the release
process, requirements often change.

An Examination of the Effects of Requirements
Changes on Software Releases

George Stark, IBM Global Services
Al Skillicorn, The MITRE Corporation

1st Lt. Ryan Ameele, U.S. Air Force

Requirements are the foundation of the software release process. They provide the basis to develop budgets, sched-
ules, and design and testing specifications. Changing requirements during a software release process impacts the
cost, schedule, and quality of the product that results. We have collected data on 40 software releases in our
environment to understand the source, magnitude, and effects of changing requirements on software maintenance
releases. The benefits received include better management of releases and improved customer communications.

During release planning, requirements
analysis, design, and test reviews, new
priorities are established, and changes to
the release content are requested in the
form of change requests being added or
deleted from the release. This require-
ments volatility makes it difficult to
develop dependable release schedules
and budgets. B. Curtis, H. Krasner, and
N. Iscoe conclude that accurate problem
domain knowledge is critical to the
success of a project, and requirements
volatility causes major difficulties during
development [10]. Although these con-
clusions confirm most people’s intuitions
concerning requirements volatility, they
are not precise enough to help managers
take effective action on their projects. M.
Lubars, C. Potts, and C. Richter went
further by interviewing 23 project teams
and recommending organizational solu-
tions rather than technological solutions
to the requirements analysis issue [11].
In no case did they find a coherent rela-
tionship between requirements analysis
and project planning.

This article therefore has two major
goals: first, to present an organization’s
data regarding the source, timing, and
impact of requirements volatility on the
project planning process; and second, to
describe opportunities for management
action in the project planning process.

Organizational Data on
Requirements Volatility and
Project Planning

The Organization and the Data
Collected
In 1994, the Missile Warning and Space
Surveillance Sensors (MWSSS) Program

Management Office was assigned re-
sponsibility for the maintenance of seven
products executing in 10 locations
worldwide. Combined, the products
contained 8 million source lines of code
written in 22 languages. Some of the
systems were more than 30 years old,
and the newest system became opera-
tional in 1992. They all operated in hard
real-time environments and had a small
set of users. To support the management
of these products, we instituted the
measurement program defined in [12].

In this project environment, a re-
quirement was defined as an approved
change request. The customer and sup-
plier agreed to a set of requirements and
a project plan to deliver a new version of
a product. A requirements change was
either an added change request, a deleted
change request, or a change in scope to
an agreed-on change request in the ver-
sion content. Because requirements
management was a primary factor in our
success, we collected data on
• Type of requirement.
• Planned and actual effort days for

each requirement.
• Planned and actual number of calen-

dar days for a version.
• Requirements changes made to the

version after plan approval—type of
change, requesting group, and im-
pact.

Who, How Often, and What Kind of
Requirements Changes
To better understand our environment
and how to improve it, we needed to
answer the following questions.
• Who requests requirements changes?

12 CROSSTALK The Journal of Defense Software Engineering December 1998

• How often do our releases experience
requirements changes?

• What kind of changes are most com-
mon?

• How much effort is associated with
individual requirements?
Four groups contributed to the re-

lease process: contractor development
team, acquisition management team,
user management, and site analysts.
Each of these groups contributed to the
requirements changes associated with a
release. Figure 1 shows the percent of
changes made by each group.

Requirements volatility comes in
three types: additions to the delivery

content, deletions from the delivery
content, and changes in scope to an
agreed-on requirement. A total of 108
requirements changes were made during
40 software releases since 1994. Figure 2
shows the distribution of these changes
by type. Additions to the release content
were the most common form of change,
followed by deletions, with scope change
being relatively rare.

Figure 3 shows the requirements
volatility for each of the 40 deliveries.
Fourteen of the 40 deliveries (35 per-
cent) had no requirements change. Of
the 14 deliveries, six were made on or
ahead of schedule, four were within 15
percent of the original scheduled date,
and four were more than 15 percent late.
Twenty-six of the 40 (65 percent) had
requirements change, with eight of them
having greater than 50 percent change.
Of the 26 releases that experienced re-
quirements change, 16 had requirements
added, 15 had deletions, and four had
scope changes. Seven releases had a com-
bination of adds, deletes, or changes.

To understand how much effort was
associated with individual changes, we
developed the software change tax-
onomy shown in Table 1. It includes 10
types of changes and root causes for each
change type.

We categorized the changes delivered
in eight releases using this taxonomy,
which consisted of 104 modification
changes (43 percent) and 139 fix
changes (57 percent). Figure 4 is a Pareto
diagram of this change data. The left
vertical axis shows the number of
changes attributed to each class, and the
right vertical axis represents the cumula-

Table 1. Software change taxonomy.

Figure 3. Requirements volatility for 40 deliveries.

tive percentage of defects and is a conve-
nient scale from which to read the line
graph. The line graph connects the cu-
mulative percents (and counts) at each
category.

Figure 1. Requirements changes by source.

Figure 2. Requirements changes by type.

Requirements Management

epyTegnahC esuaCtooR
lanoitatupmoC .noitauqenidnarepotcerrocnI

.sesehtnerapfoesutcerrocnI
.noitauqeetaruccanirotcerrocnI

.rorrenoitacnurtrognidnuoR
cigoL lacigolnidnarepotcerrocnI

.noisserpxe
.ecneuqesfotuocigoL

.dekcehcgniebelbairavgnorW
.tsetnoitidnocrocigolgnissiM

forebmuntcerrocnidetaretipooL
.semit

tupnI .tamroftcerrocnI
.noitacoltcerrocnimorfdaertupnI
deretnuocnerognissimelif-fo-dnE

.ylerutamerp
ataD

gnildnaH
.elbaliavatonelifataD

.sdnuob-fo-tuodecnereferataD
.noitazilaitiniataD

galfsadesuelbairaV , tonxedniro
.ylreporptes

rodenifedylreporptonataD
.denoisnemid

.rorregnitpircsbuS
tuptuO .noitacoltnereffidotnettirwataD

.tamroftcerrocnI
.tuptuognissimroetelpmocnI
.gnidaelsimrodelbragtuptuO

ecafretnI .ecafretnierawdrahdnaerawtfoS
.ecafretniresudnaerawtfoS

.ecafretniesabataddnaerawtfoS
.ecafretnierawtfosdnaerawtfoS

snoitarepO .egnahcerawtfosSTOGroSTOC
.lortnocnoitarugifnoC

ecnamrofreP .dedeecxetimilemiT
.dedeecxetimilegarotS

.tneiciffeningisedroedoC
.ycneiciffekrowteN

noitacificepS ecafretnimetsys-ot-metsyS
.etauqedanirotcerrocninoitacificeps
rotcerrocninoitacificepslanoitcnuF

.etauqedani
.etauqedanigniniartrolaunamresU

tnemevorpmI .noitcnufgnitsixeevorpmI
.ecafretnievorpmI

CROSSTALK The Journal of Defense Software Engineering 13December 1998

the amount of scope changes was a major factor in the delivery
schedule, which illustrates two important points: general distri-
bution should only be used as a planning guide, and releases
should be managed as stand-alone projects.

Requirements Changes by Source
Requirements changes could be initiated by the customer
(analysts or management personnel) or the development team,
i.e., the contractor or the MWSSS Program Management
Office. Figure 8 shows the distribution of changes by source
for this release. This chart shows that the changes were distrib-
uted as 55 percent driven by the development team and 45
percent by the customer. The analyst personnel and the devel-

Figure 5. Staff-days of effort by category.

Figure 6. Requirements changes by month for one release.

Figure 4. Software maintenance changes by type.

An Examination of the Effects of Requirements Changes on Software Releases

Figure 4 indicates that logic changes to the software are
most common (45 changes or 19 percent of the total). (Al-
though not shown in Figure 4, the majority root cause is miss-
ing logic or condition tests for error handling.) Using this
information, we have our design and code reviews to specifi-
cally look for these logic problems. Only two of the 243
changes involved data input problems.

Figure 5 is a Pareto diagram of the effort required to make
each change. It shows that although changes based on specifi-
cation changes only ranked fourth in number of changes
with 26, they accounted for 20 percent of the total effort at
591 staff-days. Logic changes fall to sixth when viewed in
this manner.

The information from this analysis helped maintenance
engineers make better requirements cost estimates. By review-
ing change requests and accurately assigning them to the
change taxonomy, they could estimate the staff-days required
to design, code, and test changes. For example, the average
staff-days of effort required for changes to interface require-
ments are 24 staff-days with a standard deviation of 50 staff-
days, whereas the average for functional specification changes
is 23 staff-days with a standard deviation of 29 staff-days.
Next, the actual was tracked against the estimate, and the tax-
onomy and cost information was updated as each release was
completed.

Although the current information is highly variable for
each root cause, the effort data is expected to converge around
a reasonable mean as more data is collected. This will increase
our confidence in the estimates. Sudden changes could indi-
cate a need to re-examine our processes or a need to change the
staff that implements the requirement. Even with the current
variability, using historical data is the best method to estimate
individual change effort.

A Microview of Requirements Changes on One
Release
The Configuration Control Board approved a release plan to
deliver 17 requirements in nine months at a cost of approxi-
mately $490,000. Figure 6 shows the requirements changes
over time for this release. These changes were processed both
formally (through the Configuration Control Board) and
informally (agreement between users and developers). The
figure also shows that a total of 20 changes were made to the
release content in the 14 months since project plan approval.
The two spikes for February and October occurred after design
reviews where major scope changes occurred with some of the
requirements. Nine of the changes occurred in the last five
months of the effort, and only six of the delivered require-
ments were a part of the original approved plan. This greatly
impacted the implementation effort.

Requirements Changes by Type
Figure 7 shows a significantly different distribution of changes
by type than the overall distribution of Figure 3. In Figure 7,
scope changes account for 26 percent of the changes to the
release compared with 8 percent for all releases. The increase in

14 CROSSTALK The Journal of Defense Software Engineering December 1998

Observations and
Recommendations
Requirements must be more clearly
explained and understood by the devel-
opment team, and change agreements
must be more formally managed by the
management team responsible for the
software releases. Accordingly, we
changed our process to include a rigor-
ous requirements review meeting with
the customer prior to presenting the
release plan for Configuration Control
Board approval. We also have biweekly
meetings with the MWSSS management
where the project requirements status
and other project issues are briefed.

A Macromodel to Forecast the
Effects of Requirements
Changes on Releases
To help release teams better manage the
requirements volatility and get a handle
on the impact of changes to their
project, we began to develop models
based on the historical release data. Table
2 shows the percent of planned schedule
achieved (100 means the plan was met,
greater than 100 means late, less than
100 means delivered early), the square
root of the percent of requirements vola-
tility (the sum of all changes), and the
productivity risk associated with the 20
releases. The square root transformation
was used to spread out the numbers
close to zero and condense the numbers
greater than one. Risk is defined as
changes closed per effort days available.

Figures 10 and 11 are scatter plots of
the percent of planned schedule vs. the
other two descriptive variables in Table
2. Individually, these plots have little
correlation, but used together, these
variables can provide insight to project
managers to help them understand the
schedule impact of requirements
changes.

A linear regression analysis was per-
formed on the data to develop a model
to predict schedule impact based on
requirements volatility and risk with the
following results:

Y = 0.97 + 0.41*X1/2 + 0.23*Z (1)
where

Y = Percent Schedule Change
X = Requirements Volatility
Z = Risk

The proportion of variance explained
by this model (R2) is 0.72, and the stan-
dard error of the estimate is 0.17. Notice
that the schedule change goes up regard-
less of whether the requirements changes
were an addition or deletion because the
input to the model is percent of require-
ments changes. This is a topic of debate
in the organization: Some argue that
removing requirements involves effort to
change the design and test procedures,
whereas others argue that a reduction in
requirements means less work for the
team and earlier completion of the
project.

Figure 12 shows the results of apply-
ing the model to all 40 releases executed
by our organization. From this figure, it
can be seen that the model performs
much better in the 115 percent to 130
percent of planned schedule range and
yields more optimistic results as predic-
tions get larger, i.e., greater than 150
percent of plan. This may indicate theFigure 8. Requirements changes by source.

Table 2. Schedule, requirements volatility, and
risk data for 20 software maintenance versions.

noisreV
tnetnoC

fotnecreP
dennalP
eludehcS

TRQS
fotnecreP(

stnemeriuqeR
)egnahC

egnahC(ksiR
repstseuqeR

)yaD-ffatS

1 801 33 41.0

2 401 23 51.0

3 861 851 05.0

4 231 67 81.0

5 511 0 80.0

6 511 84 72.0

7 811 54 61.0

8 931 001 10.0

9 912 851 91.0

01 921 05 70.0

11 001 78 70.0

21 111 0 10.0

31 201 81 21.0

41 321 55 70.0

51 29 0 02.0

61 871 542 10.0

71 401 0 20.0

81 011 32 80.0

91 001 13 21.0

02 49 0 30.0

Requirements Management

opment contractor accounted for 80
percent of the changes (16 out of 20).

Schedule, Cost, and Quality Impact
of Changes
Figure 9 shows the predicted version
operational date over time for the
project. The first slip (three and one-half
months) was reported at the design
review held three months after project
start. A second slip (three weeks) was
announced eight months into the
project. Finally, another completion
date, this one four and one-half months
later, was announced one year after
project start. These announced schedule
slips correspond to the major jumps in
the requirements changes graph (Figure
6). Two defects that required rework and
more testing were reported during op-
erational testing of this release. The
release was delivered a month later, mak-
ing the total schedule 10 months (more
than double the original project plan)
and the cost $100,000 (22 percent over
budget). Of course, requirement volatil-
ity was not the only reason for the
schedule and cost overrun, but it was the
major factor.

Figure 7. Requirements changes by type.

CROSSTALK The Journal of Defense Software Engineering 15December 1998

need for another explanatory variable as major changes occur
to releases.

Macromodel Use and Benefits
We have used this equation to explain the expected impact of
changes to the delivery plan as they arise. For example, one
version contained 15 planned requirements scheduled for
delivery in 91 calendar days—the customer wanted to drop
two of the requirements and change the scope of a third at
preliminary design. Managers estimated the risk to version
delivery to change from 0.14 (15 changes in 108 staff-days) to
0.1 (13 changes in 130 staff-days). Using the model, managers
forecasted the overall schedule impact to be [0.97 +
0.41*(0.2)1/2 + 0.23*(0.1)] = 1.18 or an 18 percent schedule
slip. An 18 percent slip is equivalent to 16 days added to the
91-day schedule. These 16 days would have cost the customer
an additional $60,000.

During discussion about the model and the prediction, the
customer decided that this schedule slip was not acceptable to
the overall mission of the version; therefore, they decided not
to pursue the changes but to incorporate the scope change in
the next release. The metrics-based model facilitated objective
communication with the customer concerning version release
plans and status.

The model forecasted a $50,000 cost impact and a 12-day
schedule slip from a second customer request to change the
release content. The additional cost was not acceptable to the
customer, so they decided to incorporate the changes in the
next release. Thus, the overall cost avoidance because of quan-
titative schedule impact analysis was $110,000.

Conclusion
Requirements management involves establishing and main-
taining an agreement between the customer and the supplier
on the specific number and technical content of the perfor-
mance and functionality that will be included in a software
release. This agreement forms the basis to estimate, plan, per-
form, and track the project’s activities. We believe other organi-
zations can benefit from our experience.

Acknowledgments
We thank Dieter Rombach for his suggestions and for provid-
ing references for this article. We also thank the many referees
for their excellent reviews. ◆

About the Authors
George Stark is a programming consultant with the IBM Corpo-
ration in Austin, Texas. Previously, he was a principal scientist
with The MITRE Corporation, where he supported the software
efforts of the MWSSS Program Management Office. His techni-
cal interests include software metrics and reliability for manage-
ment decision making. He has been involved in software reliabil-
ity measurement for 15 years and was the vice chairman of the
American Institute of Aeronautics and Astronautics blue-ribbon
panel on software reliability. He has been the manager of software
testing and reliability for a local loop fiber-optic telephone sys-
tem. He received the Johnson Space Center Quality Partnership
Award and the MITRE General Manager’s Award for contribu-
tions to software measurement. He has a bachelor’s degree in
statistics from Colorado State University and a master’s degree in
mathematics from the University of Houston.

Figure 9. Predicted version operational date by month.

Figure 10. Percent of planned schedule vs. square root (requirements
volatility) for 20 versions.

Figure 11. Percent of planned schedule vs. delivery risk.

Figure 12. Actual vs. predicted schedule using linear model for all 40
releases.

An Examination of the Effects of Requirements Changes on Software Releases

16 CROSSTALK The Journal of Defense Software Engineering December 1998

Do You Acquire Software but Need More Expertise?

• Technical Documentation Inspection Services
• Independent Documentation Audit
• J-STD-016-1995 Training

Paul Hewitt
Voice: 801-775-5742 DSN 775-5742
E-mail: hewittp@software.hill.af.mil

The STSC Provides These Services and More

Reed Sorensen
Voice: 801-775-5738 DSN 775-5738
E-mail: sorenser@software.hill.af.mil

Because of all the cutbacks, you are not alone. Without under-
standing the delivered software and documentation, you can-
not assure the taxpayer of a good purchase. At the Software
Technology Support Center (STSC), we have helped organiza-
tions at numerous Air Force, Army, and Navy locations make

more technically informed buys. Available on a just-in-time
basis, we will help your organization strengthen its position.
Whether your acquisition involves embedded or information
management systems, call us for an exploratory discussion of
how the right expertise can provide peace of mind.

IBM Global Services
11400 Burnet Road, MD 3901
Austin, TX 78759
Voice: 512-823-8515
Fax: 512-823-3385
E-Mail: gstark@us.ibm.com

Al Skillicorn is a member of the technical
staff of The MITRE Corporation. He
supports the software maintenance of the
early warning radar systems. Among his
other responsibilities are the Year 2000
problem and future software architectures.
He has a bachelor’s degree in engineering
from the U.S. Military Academy at West
Point. Previous work included communi-
cations modeling and analysis for the
Regency Net Communication System and
for the Theatre Nuclear Forces Communi-
cations System in Europe.

The MITRE Corporation
1150 Academy Park Loop #212
Colorado Springs, CO 80910
Voice: 719-556-2565
E-mail: skilliad@cisf.af.mil

1st Lt. Ryan Ameele is the software pro-
cess manager for the MWSSS Program
Management Office. Previously, he was
the Cargo System Software Development
Team leader for the Air Mobility Com-
mand Computer System Squadron at
Scott Air Force Base, Ill. He has a

bachelor’s degree in engineering from
Clarkson University in New York. He was
recently selected for promotion to captain.

SSSG/SDWSE
1050 E. Stewart Avenue
Peterson AFB, CO 80914-2902
Voice: 719-556-9906
E-mail: ameeler1@cisf.af.mil

References
1. Card, D.N., D.V. Cotnoir, and C.E.

Goorevich, “Managing SW Mainte-
nance Cost and Quality,” Proceedings of
the International Conference on Software
Maintenance, September 1987.

2. Chapin, N., “The Software Maintenance
Life-Cycle,” Proceedings of the Interna-
tional Conference on Software Mainte-
nance, 1988.

3. Hariza, M., J.F. Voidrot, E. Minor, L.
Pofelski, and S. Blazy, “Software Mainte-
nance: An Analysis of Industrial Needs
and Constraints,” Proceedings of the
International Conference on Software
Maintenance, Orlando, Fla., 1992.

4. Software Engineering Institute, “Soft-
ware Process Maturity Questionnaire
Capability Maturity Model, Version
1.1,” Carnegie Mellon University, Pitts-
burgh, Pa., 1994.

5. Arthur, J. and K. Stevens, “Assessing the
Adequacy of Documentation Through
Document Quality Indicators,” Proceed-

ings of the International Conference on
Software Maintenance, 1989.

6. Curtis, B., “Conceptual Issues in Soft-
ware Metrics,” Proceedings of the IEEE
International Conference on System Sci-
ences, 1986.

7. Yuen, C., “An empirical Approach to the
Study of Errors in Large Software Under
Maintenance,” Proceedings of the Interna-
tional Conference on Software Mainte-
nance, 1985, pp. 96-105.

8. The Standish Group, “The Scope of
Software Development Project Failures,”
Dennis, Mass., 1995.

9. Gibbs, W. Wayt, “Software’s Chronic
Crisis,” Scientific American, September
1994, pp. 72-81.

10. Curtis, B., H. Krasner, and N. Iscoe, “A
Field Study of the Software Design
Process for Large Systems,” Communica-
tions of the ACM, Vol. 31, No. 11, 1988,
pp. 1268-1287.

11. Lubars, M., C. Potts, and C. Richter, “A
Review of the Practice in Requirements
Modeling,” Proceedings of the Interna-
tional Symposium on Requirements Engi-
neering, 1996, pp. 2-14.

12. Stark, G.E., “Measurements for Manag-
ing Software Maintenance,” Proceedings
of the International Conference on Soft-
ware Maintenance, Monterey, Calif.,
November 1996, pp. 152-161.

Requirements Management

